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The nucleocapsid protein (NC) of human immunodeficiency virus type 1 has two zinc fingers, each contain-
ing the invariant CCHC zinc-binding motif; however, the surrounding amino acid context is not identical in the
two fingers. Recently, we demonstrated that zinc coordination is required when NC unfolds complex secondary
structures in RNA and DNA minus- and plus-strand transfer intermediates; this property of NC reflects its
nucleic acid chaperone activity. Here we have analyzed the chaperone activities of mutants having substitutions
of alternative zinc-coordinating residues, i.e., CCHH or CCCC, for the wild-type CCHC motif. We also
investigated the activities of mutants that retain the CCHC motifs but have mutations that exchange or
duplicate the zinc fingers (mutants 1-1, 2-1, and 2-2); these changes affect amino acid context. Qur results
indicate that in general, for optimal activity in an assay that measures stimulation of minus-strand transfer
and inhibition of nonspecific self-priming, the CCHC motif in the zinc fingers cannot be replaced by CCHH or
CCCC and the amino acid context of the fingers must be conserved. Context changes also reduce the ability of
NC to facilitate primer removal in plus-strand transfer. In addition, we found that the first finger is a more
crucial determinant of nucleic acid chaperone activity than the second finger. Interestingly, comparison of the
in vitro results with earlier in vivo replication data raises the possibility that NC may adopt multiple

conformations that are responsible for different NC functions during virus replication.

The nucleocapsid protein (NC) of human immunodeficiency
virus type 1 (HIV-1) is a small, basic, nucleic acid-binding
protein which associates with genomic RNA in the mature
virion core (14, 15, 54); the mature protein is generated by
proteolytic cleavage of the Gag precursor (36, 47, 63). Struc-
tural studies have revealed that free HIV-1 NC in solution has
two rigid zinc-binding domains or zinc fingers, each containing
the invariant CCHC metal ion-binding motif (30, 37, 59, 61).
The two fingers are covalently linked to each other by a short
flexible basic amino acid region and are flanked by flexible N-
or C-terminal “tails” (49-51, 59, 60, 62). The Summers group
has recently solved the three-dimensional structures of HIV-1
NC bound to the SL2 (3, 4) and SL3 (18) RNA stem-loops that
form part of the larger HIV-1 packaging signal, by nuclear
magnetic resonance (NMR) analysis.

The two NC zinc fingers are located in close proximity (45,
46, 49, 50) but exhibit only weak interactions with one another
(13, 43, 46, 49, 66). Interestingly, their structures are similar
(58), despite differences in the amino acid sequences surround-
ing the CCHC motifs (37, 54). Moreover, the biochemical
properties (8, 45) and biological activities of the two fingers are
not equivalent, and the presence of both fingers is critical for
production of replication-competent virus (9, 21, 26, 28, 29, 48,
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72); in addition, the positions of the zinc fingers cannot be
exchanged (21, 26).

NC function in virus replication is dependent on its dynamic
interaction with nucleic acids. Acting as a nucleic acid chaper-
one, NC can catalyze nucleic acid conformational rearrange-
ments that lead to the formation of the most thermodynami-
cally stable structure (65; reviewed in references 15, 38, and
54). For example, NC chaperone activity plays a major role in
the two strand transfer steps that occur during viral DNA
synthesis. During minus-strand transfer, minus-strand strong-
stop DNA [(—) SSDNA] is translocated to the 3’ terminus of
the viral RNA genome in a reaction facilitated by annealing of
the complementary repeat (R) regions at the 3’ ends of the
RNA and DNA reactants (14). In the case of HIV-1, we and
others have found that NC stimulates minus-strand transfer (2,
10, 16, 17, 20, 31, 32, 40, 52, 55, 71) by increasing the rate and
extent of annealing (17, 32, 33, 42, 71) and by blocking non-
specific self-priming induced by the complementary TAR se-
quence at the 3" end of (—) SSDNA (10, 22, 31, 32, 41, 44). In
addition, it has been reported that the efficiency of murine
leukemia virus (MuLV) (2) and Rous sarcoma virus (67) mi-
nus-strand transfer is increased in the presence of MuLV (2)
and HIV-1 NC (67), respectively.

HIV-1 plus-strand transfer is also stimulated by NC (5, 69).
Thus, HIV-1 NC promotes removal of the tRNAL® primer
from the 5’ end of minus-strand DNA (32, 69) as well as
annealing of the 18-nucleotide (nt) complementary DNA
primer-binding site (PBS) sequences at the 3’ ends of minus-
strand DNA and plus-strand strong-stop DNA [(+) SSDNA]
(32, 69). A recent NMR study demonstrated that the nucleic
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acid chaperone activity of NC destabilizes the relatively stable
stem-loop formed by the 18-nt minus-strand PBS DNA (39).
These results indicated that NC facilitates plus-strand anneal-
ing by exposing nucleotides in the stem of the minus-strand
PBS DNA structure so that they can base pair with the com-
plementary 18-nt plus-strand PBS sequence.

For many years, it was not clear which NC functions, in
addition to viral RNA packaging (7), required zinc coordina-
tion. Recently, the importance of the zinc fingers for NC ac-
tivity in HIV-1 reverse transcription in vivo was shown in
studies of viral mutants. Virions with NCs having alternative
zinc-coordinating motifs that still package genomic RNA but
synthesize reduced amounts of viral DNA and are noninfec-
tious have been described (28, 64; R. J. Gorelick and J. Buck-
man, unpublished observations). A similar class of MuLV mu-
tants (25, 27, 73) produces viral DNA with major defects in
terminal sequences (27).

In earlier studies with in vitro systems, an effect of zinc finger
mutations on extension of the tRNAJY® primer (56), minus-
strand DNA elongation (23, 70), and integration (11) was
observed. More recently, we investigated the effects of an
HIV-1 NC mutation that eliminates zinc coordination by
changing all of the cysteine residues to serine (SSHS NC). This
work demonstrated that while stimulation of plus-strand an-
nealing by NC is not dependent on the zinc finger structures,
the fingers facilitate tRNA primer removal in plus-strand
transfer and are crucial for stimulation of annealing and pre-
vention of self-priming in minus-strand transfer (32). These
results led us to conclude that the zinc fingers in NC contribute
to transient destabilization of highly structured nucleic acid
strand transfer intermediates, such as TAR-containing (—)
SSDNA.

On the basis of data from single-molecule DNA stretching
experiments using HIV-1 wild-type and SSHS NC proteins, Wil-
liams et al. (68) reported that wild-type NC significantly destabi-
lizes double-stranded DNA, presumably due to the preferential
binding of NC to single-stranded nucleic acids, and reduces the
cooperativity of the helix-coil transition in double-stranded DNA
structures; in contrast, SSHS NC stabilizes double-stranded DNA
and has no effect on cooperativity. In addition, Hargittai et al. (35)
found that the zinc finger motifs are also important for NC-
induced changes in the tertiary structure of the tRNA%® primer.
These observations underscore the critical contribution of the
zinc fingers to NC nucleic acid chaperone activity under condi-
tions in which there is a conformational rearrangement of com-
plex nucleic acid structures.

In the present work, we have extended our studies on the
role of the zinc fingers in strand transfer reactions using NC
mutants with subtle changes that may not have as drastic an
effect on zinc finger structure as the SSHS mutation. Our
results indicate that, in general, for optimal NC nucleic acid
chaperone activity, (i) the CCHH residues cannot be replaced
by alternative zinc-coordinating residues, i.e., CCHH and
CCCC, found in certain cellular proteins (6) and (ii) the amino
acid context surrounding the CCHC motifs cannot be changed
by duplicating or exchanging the zinc fingers. We also found
that the CCHC zinc-binding motif and amino acid context of
the first zinc finger are more critical determinants of chaper-
one activity than the corresponding features in the second
finger. Interestingly, for most of the zinc finger mutants, it is
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possible to correlate in vivo parameters of virus replication
with the observed in vitro nucleic acid chaperone activity.

MATERIALS AND METHODS

Materials. RNA, RNA-DNA, and DNA oligonucleotides were purchased
from the sources listed by Guo et al. (32). [y->*P]ATP (3,000 Ci/mmol) was
obtained from Amersham Pharmacia Biotech (Piscataway, N.J.).

Wild-type and mutant NC proteins. Wild-type HIV-1 NC was prepared as a
recombinant protein, which was expressed and purified as described previously
(70). Mutant NC proteins were prepared essentially as described in references 11
and 32. A list of the mutants used in this study is given in Table 1.

Reconstituted minus-strand transfer system. A detailed description of the
assay for minus-strand transfer is given by Guo et al. (31). The sequences of the
nucleic acid components in this and all other assays are from HIV-1 NL4-3 (1).
Briefly, 0.2 pmol of a 131-nt donor RNA (nt 454 to 584) was annealed at 65°C for
5 min to 0.4 pmol of a *?P-labeled 20-nt DNA primer complementary to nt 565
to 584 in US5. Reaction buffer (50 mM Tris-HCI [pH 8.0], 75 mM KCI, 1 mM
dithiothreitol), 0.2 pmol of a 148-nt acceptor RNA (nt 9475 to 9622), and HIV-1
wild-type or mutant NC proteins were then added, and the mixture was incu-
bated for 5 min at 37°C. Reactions (final volume, 20 wl) were initiated by
addition of 0.2 pmol of HIV-1 reverse transcriptase (RT) (Worthington
Biochemical Corp.), MgCl, (final concentration, 7 mM), and the four deoxyri-
bonucleoside triphosphates (dNTPs) (final concentration, 100 uM each) and
incubated at 37°C for 30 min. Termination of reactions, polyacrylamide gel
electrophoresis (PAGE) of DNA products, and PhosphorImager analysis were
performed as described before (31).

Annealing reaction. A total of 0.2 pmol each of unlabeled acceptor RNA and
synthetic (—) SSDNA (131 nt), labeled at its 5" end with 3P (34), were incubated
with wild-type or mutant NC proteins (final concentration, 1 pM) in a final
volume of 20 pl at 37°C; reaction mixtures were scaled up as needed, and 10-pl
aliquots were removed at the specified times (33). The RNA-DNA hybrid was
resolved by PAGE in 7.5% polyacrylamide gels (32) and quantified by Phosphor-
Imager analysis (33).

Assay for removal of tRNALY* from minus-strand DNA. The assay for removal
of tRNAL* from minus-strand DNA models secondary RNase H cleavage dur-
ing plus-strand transfer (see Fig. 3A) (69). Briefly, a 32-nt minus-strand DNA
with an rA at its 5" end (1 pmol) and a 17-nt RNA (1 pmol) representing the 17
nt remaining at the 3’ end of tRNALY® after initial cleavage were annealed at
65°C for 5 min to a 50-nt (+) SSDNA (0.2 pmol) labeled at its 5" end with 32P
(34). Wild-type or mutant NCs, a 48-nt minus-strand acceptor DNA (0.2 pmol),
RT (0.2 pmol), MgCl,, and four dNTPs (concentrations as indicated above for
minus-strand transfer assay) were then added, and reactions (final volume, 20 pl)
were incubated for 60 min at 37°C. The amount of labeled 80-nt plus-strand
DNA (the actual readout for RNase H cleavage) was quantified by Phosphor-
Imager analysis of gel data (69).

RESULTS

HIV-1 mutant NC proteins. In a recent study (32), we dem-
onstrated that the zinc fingers of HIV-1 NC play a critical role
in minus-strand transfer (including stimulation of annealing
and inhibition of self-priming) and in promoting the tRNA
removal step in plus-strand transfer. To determine whether
replacement of the CCHC motifs with alternate zinc-coordi-
nating residues or changes in the positions of the zinc fingers
would affect NC function, we tested eight NC mutants (Table
1) in our established strand transfer assay systems (31, 69).

Strand transfer activity of the NC mutants. The CCHH
zinc-coordinating motif is commonly found in cellular tran-
scription factors and is important for recognition of specific
sequences in duplex DNA (6). To investigate whether CCHH
can be substituted for the CCHC motifs in HIV-1 NC, we
assayed minus-strand transfer activity in reactions containing
increasing concentrations of wild-type or CCHH mutant NCs.
Three mutants with CCHH substitutions in the first (CCHH/
CCHC), second (CCHC/CCHH), or both (CCHH/CCHH)
zinc fingers (Table 1) were tested (Fig. 1, A-1 and A-2). Re-
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TABLE 1. In vitro and in vivo activities of HIV-1 NC zinc finger mutants®
Composition” In vivo activity”
NC class In vitro ghaperone
F1 F2 RNA DNA Infectivity activity
packaging synthesis

Wild type CCHC CCHC 4+ 4+ 4+ 4+
Class 1

CCHC/CCHH CCHC CCHH 4+ 4+ 1+ 4+
Class 2

2-1 F2 F1 1+ n.d. — <1+

2-2 F2 F2 1+ n.d. — <1+

SSHS*¢ SSHS SSHS 1+ — — 1+
Class 3

CCHH/CCHH CCHH CCHH 1+ — — 3+

CCHH/CCHC CCHH CCHC 2+ — — 2+
Class 4

1-1 F1 F1 3+ n.d. <1+ 3+
Class 5

CCCC/CCHC cccce CCHC 4+ 1+8 — <1+

CCHC/CCCC CCHC CCccC 4+ 3+ <1+" <1+

“The numerical values refer to percentage of wild-type activity: 4+, 75 to =100%; 3+, 50 to 75%; 2+, 25 to 50%; 1+, 1 to 25%.
 F1 and F2 refer to zinc fingers 1 and 2, respectively. DNA synthesis, synthesis of 2-LTR circular DNA. Infectivity was based on infectivity in a long-term replication

assay. n.d., not determined. —, below limits of detection.

¢ Data taken from Gorelick et al. (26, 28) except for the SSHS mutant (see footnote e).

@ Based on activity in the minus-strand transfer assay system.
¢ Data taken from Guo et al. (32).
/Reverted to wild-type phenotype at 21 days postinfection.

& Tanchou et al. (64) reported that this mutant synthesized elongated plus-strand DNA, but not 2-LTR circular DNA.

" Reverted to wild-type genotype at 35 days postinfection.

action products were resolved by PAGE (data not shown) and
quantified by PhosphorImager analysis.

As expected (31), wild-type NC greatly stimulated minus-
strand transfer and dramatically inhibited self-priming (Fig. 1,
A-1 and A-2). Increasing concentrations of the CCHH/CCHH
mutant led to moderate stimulation of minus-strand transfer
and inhibition of self-priming, whereas the CCHH/CCHC mu-
tant had low levels of activity. With CCHC/CCHH NC, syn-
thesis of strand transfer DNA reached a plateau level slightly
higher (1.3-fold) than that of the wild type; however, the extent
to which self-priming was inhibited was approximately the
same for both of these proteins.

These results demonstrate that the CCHC motif is (i) re-
quired for NC chaperone activity in minus-strand transfer and
(ii) more strictly required in the N-terminal finger position
than it is in the C-terminal position. The fact that the double
mutant was more active than CCHH/CCHC NC suggests that
the effects of the mutations on activity are not simply additive.

The CCHC motif is invariant in retroviral NC zinc fingers
(37). In addition, a database search of 50 HIV-1 strains indi-
cates that within each finger, the amino acid residues surround-
ing these motifs (i.e., the amino acid context) are highly con-
served (J. Guo and J. G. Levin, unpublished observations).
However, the amino acid sequences of the two fingers are not
identical (37, 54). These differences might be responsible for
the functional asymmetry of the two fingers observed with the
CCHH mutants (Fig. 1, A-1 and A-2).

To test this hypothesis, the activities of three zinc finger
position exchange mutants which retain the CCHC residues in
both fingers (Table 1) were also assayed (Fig. 1, B-1 and B-2).
Interestingly, the 1-1 mutant (two copies of the first finger) had
about 50% of wild-type NC activity with respect to stimulation
of minus-strand transfer (Fig. 1, B-1) and inhibition of self-

priming (Fig. 1, B-2). However, in both cases where the se-
quence of the second finger was placed in the N-terminal
position (mutants 2-1 [position exchange] and 2-2 [two copies
of second finger]), there was a complete loss of activity. These
results demonstrate that for maximal activity in minus-strand
transfer, the positions of the two zinc fingers in HIV-1 NC
cannot be duplicated or exchanged. Moreover, there is a strict
requirement for the sequence of finger 1 in the N-terminal
position, whereas the identity of the zinc finger in the C-
terminal position is less critical. Thus, the two zinc fingers in
HIV-1 NC do not exhibit equivalent activity in minus-strand
transfer.

In other experiments, CCCC, a zinc coordination motif com-
monly contained in steroid hormone receptors (6), was substi-
tuted in either the first or second finger. Both mutant NC
proteins (CCCC/CCHC and CCHC/CCCC) failed to stimulate
minus-strand transfer or inhibit self-priming (Table 1 and data
not shown).

Annealing activity of mutant NC proteins. Recently, we es-
tablished that NC-stimulated annealing in minus-strand trans-
fer is dependent on the presence of the zinc fingers, which
participate in destabilization of the complementary TAR struc-
tures at the 3’ ends of (—) SSDNA and acceptor RNA (32). To
extend these observations, we tested all eight NC mutants in
the annealing assay (Fig. 2), as described in Materials and
Methods. Figure 2A, B, and C shows the results obtained with
the CCHH, CCCC, and position exchange mutants, respec-
tively.

The data in Fig. 2A indicate that, compared with wild-type
NG, substitution of CCHH in the first finger (CCHH/CCHC)
dramatically reduced annealing activity. However, the same
change in the second finger (CCHC/CCHH) had only a small
effect on the rate and extent of annealing. Interestingly, the
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FIG. 1. Strand transfer activity of CCHH and position exchange mutants. (I) CCHH group (A-1 and A-2). Gel data from four experiments were
averaged and quantified by Phosphorlmager analysis; the amounts of the strand transfer product (A-1) and self-priming products (A-2) were
plotted as a function of NC concentration. Symbols: @, wild type; ®, CCHC/CCHH; m, CCHH/CCHH; and A, CCHH/CCHC. (II) Position
exchange group (B-1 and B-2). The amounts of the strand transfer product (B-1) and self-priming products (B-2) from a representative experiment
were quantified and plotted as described above. Symbols: @, wild type; @, 1-1; m, 2-1; and A, 2-2.

mutant having CCHH in both fingers (CCHH/CCHH) had
lower annealing activity than wild-type NC, but higher anneal-
ing activity than the CCHH/CCHC mutant (CCHH in the first
finger only).

Figure 2B shows that replacement of CCHC with CCCC in
either the first or second finger greatly reduced stimulation of
annealing compared to wild-type NC. However, it is notewor-

thy that the CCHC/CCCC mutant had low but significant
activity, whereas the activity of the CCCC/CCHC mutant
reached a plateau value only slightly higher than that observed
with a minus-NC control (32, 33).

The data in Fig. 2C show that the 1-1 mutant had relatively
high activity in the annealing assay. However, replacement of
the first finger with the second finger (mutants 2-1 and 2-2) led
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FIG. 2. Annealing activities of wild-type and mutant NC proteins. Annealing reactions were performed as described in Materials and Methods.
The data were plotted as the percentage of (—) SSDNA annealed as a function of time. (A) CCHH group. In this set, the results of four
experiments were averaged. Symbols: ¢, wild type; ®, CCHC/CCHH; m, CCHH/CCHH; and A, CCHH/CCHC. (B) CCCC group. Symbols: , wild
type; ®, CCHC/CCCC; and m, CCCC/CCHC. (C) Position exchange group. Symbols: @, wild type; @, 1-1; m, 2-1; and A, 2-2.

to a drastic reduction in annealing activity, with the rate and
extent of annealing similar to that seen in the absence of NC
(32, 33). These results underscore the conclusion reached from
the assay of minus-strand transfer (Fig. 1, B-1 and B-2), indi-
cating that the positions of the two zinc fingers are not inter-
changeable.

The annealing data were further analyzed by calculating the
t,,, values for the individual reactions. For reactions containing
the wild-type and CCHC/CCHH NCs, the ¢, , values were 0.88
and 0.95 min, respectively; the values for the CCHH/CCHH
and 1-1 mutants were 1.9 and 2.0 min, respectively. The other
NC mutants were inefficient at promoting the annealing reac-
tion, and the #,,, values were not estimated.

Taken together, the data in Fig. 2 demonstrate that while
wild-type NC has higher annealing activity than any of the
mutants, annealing is facilitated when the CCHC motif is
present in the first finger and the residues surrounding the
CCHC motif in the first finger are in the N-terminal position.
These results parallel the findings for overall strand transfer
and self-priming (Fig. 1). However, it should be noted that the
annealing assay is a less sensitive indicator of zinc finger func-
tion than assay of strand transfer and self-priming: for exam-
ple, mutant 1-1 has 50% of wild-type activity in the strand
transfer assay (Fig. 1, B-1 and B-2) and 90% of wild-type
activity in the annealing assay (Fig. 2C).

Primer removal activity of zinc finger position exchange
mutant NC proteins. During plus-strand transfer, the tRNAL>®
primer must be removed from minus-strand DNA (12). This
occurs in two steps (57, 69): (i) RNase H-catalyzed primary cleav-
age, which removes the 3’ rA of the tRNA; and (ii) removal of an
additional 17 nt from the 3’ end of the tRNA, which occurs most
efficiently when both RNase H activity and NC, containing the
zinc fingers, are present (32, 69).

To determine whether both zinc fingers are equally impor-
tant for this activity of NC, we tested the position exchange

mutants (Table 1) for tRNA removal activity (Fig. 3). In this
assay (69), we have modeled the second step in this process
(see above; Fig. 3A). Since minus-strand acceptor DNA, NC,
and RT are provided in the assay, once primer removal is
complete, the 18-nt complementary PBS in (+) SSDNA and
acceptor DNA are annealed (Fig. 3A), plus- and minus-strand
DNAs are elongated, and the strand transfer product, an 80-bp
double-stranded DNA, is formed. Thus, the readout for the
assay is synthesis of the 80-bp DNA, which reflects the extent
of primer removal (69). However, since only plus-strand DNA
is labeled, the product detected by PAGE is actually the 80-nt
plus-strand DNA (reference 69 and data not shown).

Figure 3B illustrates the effect of increasing amounts of
wild-type and mutant NC proteins on primer removal. With
the highest concentration of wild-type NC (2.0 uM, 1.75 nt/
NC), the amount of the strand transfer product was 5.4-fold
greater than the amount made in the absence of NC (black
bar). In the presence of mutant 1-1, a similar stimulation was
observed (~4-fold). In contrast, under the same conditions,
the 2-1 and 2-2 mutants showed increases of only 1.6- and
1.8-fold, respectively. These results demonstrate that the two
zinc fingers in HIV-1 NC are not exchangeable in this assay
and indicate a more critical role of the first finger in the
promotion of primer removal.

DISCUSSION

A major goal of the present study was to investigate the zinc
finger requirement for NC nucleic acid chaperone activity in
HIV-1 minus- and plus-strand transfer and to address the
following questions: (i) can the CCHC motifs in the NC zinc
fingers be replaced by alternative zinc coordination motifs such
as CCHH and CCCC and (ii) can the zinc fingers be exchanged
or duplicated? The data indicate that the CCHC motifs and
the amino acid context surrounding these motifs must be pre-
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FIG. 3. Effect of wild-type and mutant NC proteins on complete primer removal. The assay was performed as described in Materials and
Methods. (A) Nucleic acid strand transfer intermediates present in the reaction mixture. The minus-strand donor (32 nt) and acceptor (48 nt)
DNAs are shown as open rectangles, RNA (rA attached to the donor DNA and 17-nt RNA, representing the 17 nt remaining at the 3’ end of
tRNAL following initial RNase H cleavage) is shown as narrow solid rectangles, and (+) SSDNA (50 nt) is shown as a thick solid rectangle. The
2P label at the 5" end of (+) SSDNA is shown by an asterisk. This diagram is taken from Fig. 7A in reference 69. PBS and pbs, plus- and
minus-strand PBS sequences, respectively. (B) Primer removal in reactions containing increasing concentrations of wild-type (WT) NC or the 2-1,
2-2, and 1-1 NC mutants. The concentrations were as follows: solid bars, no NC; vertically striped bars, 0.5 uM (7 nt/NC); open bars, 1.0 pM (3.5

nt/NC); and diagonally striped bars, 2.0 M (1.75 nt/NC).

served for optimal NC activity. The results also point to the
critical connection between nucleic acid chaperone activity and
the presence of a native zinc finger in the N-terminal position.

The CCHH mutation (change from C to H) shortens the
length of the peptide-to-metal ion bond. In contrast, the CCCC
mutation (change from H to C) increases the length of the
peptide-to-metal ion bond. Both of these mutations change the
conformation of the peptide in the immediate vicinity of the
zinc fingers. This, in turn, alters the surface orientation of the
side chains and the peptide backbone (19, 53, 66) and ulti-
mately leads to a loss of biological activity, as discussed below.

For example, the CCHH/CCHC mutant (CCHH substitu-
tion in the first finger) has low levels of activity in assays for NC
function (Fig. 1, A-1 and A-2; Fig. 2A). Surprisingly, substitu-
tion of CCHH in both fingers, which might be expected to
lower NC activity to an even greater extent, actually results in
less than twofold reduction in minus-strand transfer activity
compared with wild-type NC (Fig. 1, A-1 and A-2), relatively
high activity in the annealing assay (Fig. 2A), and fourfold
greater activity than wild type in an in vitro integration assay
(11). These findings indicate that the zinc fingers do not func-
tion independently and that the activities of the two fingers are
not additive.

In view of the high level of activity exhibited by the CCHC/
CCHH mutant in the minus-strand transfer assay (Fig. 1, A-1
and A-2), the lack of activity of the CCHC/CCCC mutant
(Table 1 and data not shown) was unexpected, particularly
since inadvertent oxidation of the cysteine residues was ex-
cluded (E. N. Chertova and L. E. Henderson, unpublished

observations). Structural analysis will be needed to resolve the
question of why the CCCC and CCHH second-finger replace-
ments lead to such different biological activities.

In earlier in vitro studies of the position exchange group
(1-1, 2-1, and 2-2), the mutant NCs were shown to have either
equivalent inhibitory effects on NC activity (24, 70) or little or
no effect on activity (11). In sharp contrast, the results pre-
sented here demonstrate differential activity and parallel in
vivo observations (Table 1) (26). Thus, the 1-1 mutant signif-
icantly stimulates minus-strand transfer (~50% of wild-type
activity) (Fig. 1, B-1 and B-2), promotes annealing almost as
efficiently as wild-type NC (Fig. 2C), and facilitates tRNA
removal (~75% of wild-type activity) (Fig. 3). However, the
two other mutants have only minimal activity in all of these
assays. It is of interest that when some of the mutants used in
this study (including 1-1 and 2-1) were assayed for nucleic acid
chaperone activity by the single-molecule DNA stretching
technique (68), the results were in excellent agreement with
the minus-strand transfer data presented here (M. Williams,
R. J. Gorelick, and K. Musier-Forsyth, submitted for publica-
tion).

In general, it is desirable to have in vitro assays that reflect
the in vivo properties of a given protein. Thus, another objec-
tive of this study was to see if the in vitro chaperone activity of
the purified mutant proteins could be correlated with markers
for virus replication. The results obtained with the position
exchange mutants suggested that such a correlation might be
possible. We grouped the mutants into several classes with
respect to biological function (Table 1). Class 1 consists of
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mutant CCHC/CCHH, which exhibits in vitro (Fig. 1, A-1 and
A-2) and in vivo (28) activities comparable to those of the wild
type. Although the mutant has 50% of wild-type infectivity in
a single-cycle assay, its titer is 100-fold lower than that of the
wild type in a long-term replication assay (28). This suggests
that a viral function other than RNA packaging or reverse
transcription may be responsible for the replication defect.

Class 2 mutants, 2-1, 2-2 (26), and SSHS NC (32), are severely
deficient in RNA packaging, do not synthesize detectable levels of
two-long-terminal-repeat (2-LTR) circular DNA, are noninfec-
tious, and have little or no in vitro chaperone activity. Class 3
mutants, CCHH/CCHC and CCHH/CCHH, have a phenotype
(28) similar to that of the class 2 mutants except that the class 3
mutants have low (CCHH/CCHC) or moderately high (CCHH/
CCHH) chaperone activity (Fig. 1, A-1 and A-2). Class 4 consists
of mutant 1-1: it packages high levels of genomic RNA (26) and
has relatively high chaperone activity (Fig. 1, B-1 and B-2, Fig. 2C,
and Fig. 3). At first this mutant appeared to be replication defec-
tive, but after 21 days, it reverted to replication with wild-type
kinetics; this suggests that the mutant replicated initially at a low
rate (26).

Class 5 includes the two CCCC mutants. The CCCC/CCHC
mutant is not infectious (19, 28) and has virtually no nucleic
acid chaperone activity in vitro (Fig. 2B, Table 1, and data not
shown). However, it packages high levels of genomic RNA (28)
and synthesizes a small amount of DNA in vivo (28, 64). It was
suggested that the DNA is not only reduced in amount, but
may also contain defects that block integration (28, 64; R. J.
Gorelick and J. Buckman, unpublished observations). The
CCHC/CCCC mutant phenotype is more puzzling. Despite a
severe deficiency in its ability to stimulate minus-strand trans-
fer (Table 1 and data not shown), this mutant encapsidates
wild-type levels of viral RNA, synthesizes significant amounts
of DNA, and is infectious in a single-cycle assay (45% of
wild-type value) (28). In a long-term replication assay, repli-
cation was initially undetectable, but after ~4 weeks in culture,
a titer measuring 1,000-fold lower than that of the wild type
was observed; by day 35, the mutant had reverted to the wild-
type genotype (28).

Correlation of in vivo and in vitro activities might be ex-
pected to be approximate, since virus replication requires some
NC functions that are not directly related to chaperone activity
(14). Interestingly, however, Table 1 demonstrates that most of
the NC mutants tested here can be grouped into functional
classes in which infectivity correlates with in vivo parameters
and with in vitro chaperone activity. This is possible because
our assays, in particular the assay for minus-strand transfer and
self-priming, provide a highly sensitive approach for evaluating
NC zinc finger function. Thus, both the in vivo and in vitro
assays reveal a requirement for the CCHC zinc-coordinating
residues and a wild-type first finger in the N-terminal position.

Another interesting finding that emerges from the data in
Table 1 is that reduction or loss of RNA packaging activity
does not always correlate with loss or reduction of in vitro
nucleic acid chaperone activity (e.g., class 3, CCHH/CCHH,
and class 5, CCCC/CCHC). In general, loss of either one of
these activities is associated with loss of infectivity, suggesting
that both are required for production of infectious virus. This
raises an intriguing question: Why do some of the zinc finger
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mutations abolish either RNA packaging activity or chaperone
activity, but not both?

All NC functions clearly derive from the ability of NC to
bind to multiple nucleic acids. However, it is known from
structural studies that NC binding to different nucleic acids is
associated with unique structural configurations, dictated in
part by the structure and sequence of the bound molecules (3,
4, 18). This shows that NC has the flexibility to adopt multiple
conformations that are appropriate for different functions, in-
cluding some that may still remain to be identified. Our data
suggest that the specific structural distortions induced by var-
ious mutations will have differential effects on individual NC
activities.
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